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The three-dimensional laminar boundary layer on 
a rotating helical blade 
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The equations of motion of an incompressible viscous fluid are given in a rotating 
helical co-ordinate system, which is non-orthogonal. Partial differential equa- 
tions are derived for the boundary-layer flow on a rotating helical blade. Numeri- 
cal solutions of these equations show that the radial flow in the boundary layer 
is strongly dependent upon the stagger and speed of rotation of the blade. 

1. Introduction 
The boundary-layer flow over the blades of an axial-flow turbomachine is 

not two-dimensional. On the stationary blades the boundary layer is usually 
subject to  a radial pressure gradient (pressure increasing with radius) which 
arises because of the circumferential component of velocity in the mainstream 
flow. Because of viscous effects, the velocity near the blades is less than that in 
the mainstream and an inward radial movement of fluid results. On the rotating 
blades the fluid near the surface of the blade may move faster than that in the 
mainstream and, if so, it may move radially outward, even if the pressure in- 
creases with radius in the mainstream. If the blade is inclined at an angle +( + 0) 
to the axis of rotation, Coriolis forces may also be important. 

Two special cases studied previously may be mentioned here: 
(i) A blade rotating in a fluid at rest. Fogarty (1951) has studied the laminar 

boundary-layer flow on a semi-infinite flat plate rotating about an axis per- 
pendicular to its plane and passing through its edge, Mainstream pressure 
gradients are absent, but Corioliseffects are important, for the angle $-approaches 
90'. The fluid is centrifuged outwards. From the Navier-Stokes equations, re- 
ferred to a set of rotating axes, Fogarty derived the Blasius equation for flow 
along the chord, and a second equation for flow along the span. Numerical 
solutions were obtained. 

[ii) A stationary blade of high stagger ($ = 90'). Mager & Hansen (1952) 
have derived equations for the inward radial flow of the boundary layer on a semi- 
infinite flat plate when the streamlines outside the boundary layer are of circular 
shape. Numerical solutions were obtained for the radial velocity. 

For the study of the boundary layers on turbine and compressor blades, a 
co-ordinate system more general than those used by Fogarty and Mager & 
Hansen is required, because the mainstream flow follows a path which is approxi- 
mately helical. Figure 1 shows the helical co-ordinate system chosen for the 
present investigation. The helical blade has its leading edge along the radial 
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line marked t i n  figure 1. The helix xis a typical generator of the blade; its radius 
and angle are z and @ respectively, and, when its initial point is moved along the 
radial line <, the helix itself traverses the surface of the blade. A general point 
Pb on the blade has co-ordinates (x,z), where x represents the distance of 
from the leading edge measured along the helix, and z represents the distance from 
the axis of rotation. A general point Pr in the flow has co-ordinates (x, y, z ) ,  where 
y denotes the distance between p b  and Pf measured along the helix orthogonal to 
the blade. The co-ordinates (x, y, z )  form a non-orthogonal system, the curves 
along which x, y and x separately increase being respectively a helix of angle @ 
drawn on a cylinder of radius z, the helix of angle (270 O + @) on the same cylinder, 
and the straight line normal to the cylinder. The corresponding velocity com- 
ponents relative to the co-ordinate system are denoted by (u ,v ,w) .  Use of 
such a co-ordinate system, rotating with angular velocity Q about the 6 axis, 
enables a general analysis for the laminar boundary layers on helical blades to 
be developed. The cases studied by Fogarty and Mager & Hansen are then par- 
ticular examples of the use of this general analysis. 

The momentum equation in a system rotating with angular velocity Q has 
been given, for example, by Mager (1954); it is 

V(*q2) - q x (V x q) + 2(sl  x q) + (S2 x (In x r)) = - ( I /p)Vp - v(V x (V x 9)). (1) 

The continuity equation for incompressible flow is 

v.q = 0, ( 2 )  

where g is the velocity relative to the rotating system, p the pressure, p the 
density and r the position vector relative to the origin 0 (see figure 1). The 
momentum equations in the x-, y- and z-directions of the rotating helical co- 
ordinate system are given in the appendix, together with the continuity equation. 
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FGURE 1. The helical co-ordinate system. 
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2. The boundary-layer equations 
The equations of motion given in the appendix are used as the starting-point 

of a study of the boundary-layer flow on a helical blade lying in the surface y = 0 
(see figure 2). Here, as in an axial turbomachine, the fluid flows in an annular 
region between an inner cylinder C,, rotating about the 5-axis, and an outer 
fixed cylinder C,; the helical blade projects from the surface of C,. The annular 
wall boundary layers on C, and C, are not considered in this problem, it being 
supposed that they do not interfere with the boundary layer developed on the 
rotating blade. 

FIGURE 2. The helical blade. U = relative velocity at  entry; Ub = blade speed; 

u, = (U+U,); v = w = 0. 

The mainstream flow in the annular region has axial and circumferential 
components of velocity. When the blade speed U, = (8 x z) is subtracted from 
the absolute velocity U, = (U, + U), the resultant relative velocity U(z) is 
parallel to the blade. This condition of zero incidence approximates to the design 
conditioqn most turbomachines. 

20-2 
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The axial component of absolute velocity is thus U cos $, and the circumferen- 
tial component is (U, + U sin $). It is assumed that this mainstream flow is in 
radial equilibrium, i.e. that the radial velocity is zero. Outside the boundary 
layer the components of velocity relative to the rotating system (x, y, z )  are then 

u = U(z ) ,  v = 0, w = 0, (3) 

since the flow is at  zero incidence, and has no radial component. 
Equations (31), (32), (33) and (34) of the appendix, which will be solved for 

constant x ,  may be made non-dimensional by dividing all lengths by the maximum 
length of the blade in the x-direction (c ) ,  velocities by the mainstream velocity 
U ,  angular velocity by (Ujc) ,  pressure by pU2, and kinematic viscosity by Uc. 
Dimensional symbols already defined are retained for the non-dimensional 
analysis that follows below. 

The velocity distribution of equation (3) implies that the pressure in the 
mainstream depends only on z ,  and is given by 

Y (4) 
dp 
dz  z 

( U sin $ + 5 2 ~ ) ~  -- - - 

as can be established from the equations of motion, or otherwise. 

the boundary layer: 

ary layer y = 0(6), where 6 < 1. 

where E < 1. 

tional turbomachines, i.e. 

Some assumptions are now made which simplify the equations of motion within 

(i) The boundary-layer thickness is small with the chord; thus in the bound- 

(ii) The ratio of the length of the blade to the radius is small, or x = 0(1/e), 

(iii) The blade speed and mainstream velocity are of like order, as in conven- 

Qz/U = O(1) or 52 = O(B) .  

It follows from (i) and (ii) that 

8 = (xsin$ -ycos$)/x 

is small, 0 = O(6) or B = O(E),  whichever is the greater, and from (ii) and (iii) 
that the mainstream radial pressure gradient is small, i.e. dp/dz = O(E).  The 
curvature of the blade (k = (sin @)2/z)  is also O(E).  

At the leading edge of the blade the radial velocity w is zero. The development 
of radial flow within the boundary layer will be controlled by the angularvelocity, 
the mainstream pressure gradient, and the curvature of the blade, and these 
have been assumed to be small, so that w = O(E).  Terms in a small quantity of 
relative order higher than the first are now neglected in the equations of motion 
(see appendix). The continuity equation (34) becomes 

au av -+- = 0,  
ax ay 

and, since u and aujax are O(l ) ,  av/ay is O(l) ,  v is O(6). 
It can be seen from the momentum equation in the y-direction (equation (32)) 

that the pressuh is sensibly constant across the boundary layer, so that the 
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mainstream pressure distribution is imposed on the boundary layer. The mo- 
mentum equation in the x-direction (equation (31)) is therefore 

au au a2u 
ax ay a g  

u-+v--v- = 0, 

and the momentum equation in the z-direction (equation (33)) is 

(7) 
aw aw (U2-u2)sin2$ a2w 

ax ay Z aY2 u-+v-+ +Z(U-u)Qsin$-v-- = 0. 

The Reynolds number based on the blade length is 

Re = ( 1 / ~ )  = 0(cY2). 

3. Solutions of the differential equations 
The differential equations (5), (6) and (7) describe, toafirstorder, theboundary- 

layer flow on a rotating helical blade. The equations cannot be solved analy- 
tically and methods suggested by Blasius (1908) and Fogarty (1951) are used to 
obtain numerical solutions. 

Following Blasius, a stream function q5 is introduced which satisfies the con- 

aq5 aq5 
aY ax 

By defining q5 = (vU&f(r) ,  

and 'I = g(U/v44 

tinuity equation ( 5 ) :  
u = -, = --. 

it follows that u = uf', 
v = 4(vU/x)t (rf' -f). 

2f"+ff" = 0, 

Equation (6) then becomes the Blasius equation 

(9) 

(14) 

with boundary conditions 

A numerical solution of the Blasius equation has been given by Howarth (1938); 
he found that 

The equation of motion in the radial direction is reduced by making a sub- 
stitution similar to that suggested by Fogarty, 

f"(0) = 0.33206. (16) 

UI = xUh/z. (17) 

2A" + h'f- Zhf' - 2P2( 1 -f") - 4PQ( 1 -f') = 0, (18) 

in which P = sin$, Q = xQz/U. (19) 

Equation (7) then becomes 
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Equation (18) may be solved by setting 
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= W g ( 7 )  + &h(r)l, 
where 2 g “ + g l f - 2 g f ’ - 2 ( 1 - f 2 )  = 0 ,  

2h” + Vf- 2hf’ - 4(1 -f’) = 0. 

The boundary or conditions on (21) and ( 2 2 )  are 

at 7 = 00. 
h = = 0, ”’) 

f =  0, 
f’= 0, 

(23) 

9 = 0, 
h = 0, 

Numerical solutions of equations (21) and ( 2 2 )  were obtained using a digital 
computer. The initial slope of the curve g 5 g(7)  (or h = h(7)) at the origin was 
guessed and g (or h) obtained at equal intervals of 7, using the Runge-Kutta 
method with interval A7 = 0.2 for 0 < 7 < 8. The correct initial slope g’(0) 
(or h’(0)) to give g -+ 0 (or h -+ 0 )  as ?;1+ 00 was found by trial and error. Solu- 
tions of equations (21) and ( 2 2 )  are given in figure 3. 

71 = Y ( W d  
FIGURE 3. Solutions of the equations for g(7)  and h(7). 
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It is of interest to determine the angular displacement of the boundary-layer 
flow from the x-direction. This angle is defined as 

y = tan-l (w/u) = tan-l (xhlzf’). (24)  

The value of the angle y at the surface of the blade is found by taking the limit 
of equation (24 )  as p -+ 0. Since h andf’ approach zero as p + 0, it  is convenient 
to expand h(p), andf(p) as power series in p 

f(p) = a, + alp + a2p2 + a3ps + a4y4 + . . . , 
h ( y ) ,  = b, + b,p + b2p2 + b,p3 + b,p4 + . . . , 

(25)  

(26) 

where the subscript on A(?) denotes at constant z. Equations (25 )  and (26)  are 
subject to the boundary conditions 

at  p = O ,  h = O  at y=m,  (27) 

f =  0, 
f’ = 0, 

f” = 0.33206,l 

h = 0, I 
from which it follows that 

a. = a, = b, = 0, a2 = &j”(O), bl = h’(O),. (28 )  

Thus 

and, on the surface of the blade a t  p = 0, 

(29 )  

Numerical calculations of the angle y show that it is greatest at the wall. ywall 
increases linearly with increasing distance in the x-direction, and is inversely 
proportional to the radius. 

The restrictions discussed in $ 2  imply that P and Q must be of order unity. 
Some representative solutions of equation (18)  (for P = 1, Q = - 1, 0 and + 1) 
are given in figure 4 .  

4. Further properties of the differential equations 
The differential equations ( 5 ) ,  ( 6 )  and (7) were obtained on the assumptions 

that the mainstream velocity was a function of the radius only (i.e. U = U(z ) ) ,  
and that the stagger angle 9 was constant. Equation (18) was integrated numeri- 
cally with respect to p (which is independent of z )  by eliminating P and Q. The 
solutions will be more useful tc designers of turbomachines if some radial variation 
in $ can be accommodated, for they will then give an estimate of the boundary- 
layer flow on twisted blades. If $ = $(z), additional terms in (di,h/dx) will 
occur in the equations of motion as given in the appendix. It is found that the 
equations ( 5 ) ,  (6) and (7) are unchanged if (d$/dz) is of the order a, where LZ < 1 ,  
so that the analysis given is valid for helical blades with small twist, the local 
values of 9, P and Q being used in the solution of equation (18 ) .  
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5. Discussion 
Figure 4 shows the radial flow in the boundary layer for a fixed value of P, 

and varying values of Q. For no rotation, there is a radial flow inwards, the velo- 
city attaining a maximum a t  9 = 1.3, although the maximum deviation of flow 
angle from the x-direction occurs at the wall. 

FIGURE 4. 

- -0 1 2 3 4 5 6 

?7 = $4 U/W* 
Some representative solutions of the equation in the radial direction. 

When the circumferential component of the relative velocity and blade speed 
are in the same direction (as for most turbine rotor blades) the absolute circum- 
ferential velocity of the fluid near the blade is less than that in the mainstream, 
and there is a flow inwards along the blade in the boundary layer, as for Q = 1.0 
(figure 4). When the circumferential component of the relative velocity and the 
blade speed are in opposite directions, the absolute circumferential velocity of the 
fluid near the blade may be greater than that in the mainstream and there may be 
a flow outwards, as for Q = - 1.0 (figure 4). This usually occurs on compressor 
rotor blades. 

The solution to Fogarty’s problem of the rotating helicopter blade is obtained 
when q3 = 90’ and U, = ZQ = - U .  There is no radial pressure gradient, since the 
absolutemainstreamvelocity, and hence the swirl, are zero. (In Fogarty’s analysis 
the term (u2/z) does not appear in the radial momentum equation because his 
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co-ordinate system, and therefore boundary conditions, are not the same as in 
the analysis given above.) Mager & Hansen's equation for the radial flow is 
identical with that for g ( r ) ,  equation (21).  It is the case of $ = 90" and U, = 0. 

Appendix. The equations of motion in a helical co-ordinate system 
In  the appendix the following symbols are used: 

c cos $ 
s sin$ 

0 

q usin$-vcos$ 

(x sin $ - y cos $) /z  

a/aZ sin $(a/ax) - cos $(a/ay) 

The momentum equation in the x-direction: 

(q + ub)20s 

Z 
2q02 2 u ,  ( 1  + 0 4  - 

au au 

The momentum equation in the y-direction: 

The continuity equation: 



3 14 J .  H .  Horlock and J .  Wordsworth 

R E F E R E N C E S  

BLASIUS, H. 1908 2. Math. Phys. 56, 4. 
FOGARTY, L. E. 1951 J .  Aero. Sci. 18, 247. 
HOWARTH, L. 1938 Proc. Roy. Soc. A, 164, 547. 
MAGER, A. 1954 J .  Aero. Sci. 21, 835. 
MACER, A. & HANSEN, H. 1952 N.A.C.A. Tech. Note 2658. 


